
www.manaraa.com

IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS

Environ. Res. Lett. 6 (2011) 024023 (6pp) doi:10.1088/1748-9326/6/2/024023

Estimation of chlorophyll-a concentration
in productive turbid waters using a
Hyperspectral Imager for the Coastal
Ocean—the Azov Sea case study

Anatoly A Gitelson1,4, Bo-Cai Gao2, Rong-Rong Li2,
Sergey Berdnikov3 and Vladislav Saprygin3

1 The Center for Advanced Land Management Information Technologies (CALMIT), School
of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
2 Remote Sensing Division, Naval Research Laboratory, Code 7230, Washington, DC 20375,
USA
3 The Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don,
344 000, Russia

E-mail: agitelson2@unl.edu

Received 8 March 2011
Accepted for publication 10 June 2011
Published 30 June 2011
Online at stacks.iop.org/ERL/6/024023

Abstract
We present here the results of chlorophyll-a (chl-a) concentration estimation using the red and
near infrared (NIR) spectral bands of a Hyperspectral Imager for the Coastal Ocean (HICO) in
productive turbid waters of the Azov Sea, Russia. During the data collection campaign in the
summer of 2010 in Taganrog Bay and the Azov Sea, water samples were collected and
concentrations of chl-a were measured analytically. The NIR–red models were tuned to
optimize the spectral band selections and chl-a concentrations were retrieved from HICO data.
The NIR–red three-band model with HICO-retrieved reflectances at wavelengths 684, 700, and
720 nm explained more than 85% of chl-a concentration variation in the range from 19.67 to
93.14 mg m−3 and was able to estimate chl-a with root mean square error below 10 mg m−3.
The results indicate the high potential of HICO data to estimate chl-a concentration in turbid
productive (Case II) waters in real-time, which will be of immense value to scientists, natural
resource managers, and decision makers involved in managing the inland and coastal aquatic
ecosystems.
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1. Introduction

Remote estimation of the concentrations of water constituents
is based on the relationship between the remote sensing re-
flectance, Rrs(λ), and the inherent optical properties, backscat-
tering coefficient, bb(λ), and absorption coefficient, a(λ)

4 Author to whom any correspondence should be addressed.

(Gordon et al 1975):

Rrs(λ) ∝ bb(λ)

a(λ) + bb(λ)
(1)

where a(λ) is the sum of the absorption coefficients of
phytoplankton pigments, apigm, colored dissolved organic
matter, aCDOM, non-algal particles, aNAP, and pure water, awater

(e.g. Gordon et al 1988). To retrieve the chl-a concentration
from spectral reflectance, one has to isolate the chl-a absorption
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Figure 1. Reflectance spectra acquired by HICO on 13 July 2010.

coefficient. In open ocean waters chl-a is derived using the
blue and green spectral regions (e.g. Gordon and Morel 1983).
However, in the turbid productive case 2 waters (Morel and
Prieur 1977) these spectral regions cannot be used to estimate
chl-a because of the overlapping, uncorrelated absorptions
by CDOM and NAP, which are much larger in these waters
(e.g. Gitelson 1992, Gons 1999, Dall’Olmo and Gitelson
2005a, 2005b).

Algorithms developed for estimating chl-a in turbid
productive waters are based on the properties of the reflectance
peak near 700 nm (e.g. Vasilkov and Kopelevich 1982,
Gitelson et al 1985, Stumpf and Tyler 1988, Gitelson 1992,
Gons 1999, Gower et al 1999). Recently, Dall’Olmo et al
(2003), Dall’Olmo and Gitelson (2005a) provided evidence
that a three-band reflectance model, originally developed for
estimating pigment contents in terrestrial vegetation (Gitelson
et al 2003, 2005), could also be used to assess chl-a in turbid
productive waters. The model relates pigment concentration
Cpigm to reflectance R(λi ) in three spectral bands λi (Gitelson
et al 2003):

Cpigm ∝ [R−1(λ1) − R−1(λ2)] × R(λ3). (2)

It was shown that for estimating chl-a concentration, λ1 should
be in the red range around 670 nm, λ2 in the range around
710 nm and λ3 in the NIR range around 750 nm (Dall’Olmo
and Gitelson 2005a, 2006, Gitelson et al 2007, 2008).

This study focuses on assessing the potential of the
(a) NIR–red models to estimate chl-a concentrations in turbid
productive waters using Hyperspectral Imager for the Coastal
Ocean (HICO) data and (b) HICO hyperspectral data for
estimating other phytoplankton pigments.

2. Data and methods

HICO is the first hyperspectral imager specifically made
for environmental characterization of the coastal ocean from
space. HICO images one scene per 90 min orbit, with
each scene spanning an area approximately 42 km wide and
190 km long, large enough to capture the scale of coastal
ocean dynamics. Each pixel is a 95 m square, with 88

Figure 2. Maximum band ratio algorithm (e.g. O’Reilly et al 1998)
applied to estimate chl-a concentration.

spectral channels covering the range from 400 to 900 nm.
This includes visible light (400–700 nm), which penetrates the
water and provides information on water properties and bottom
reflectance, and shortwave infrared radiation (700–900 nm),
which is used to correct for atmospheric aerosols and surface
reflectance (Lucke et al 2011, Corson and Davis 2011).

The field data collection campaign was undertaken on 13–
15 July 2010 over Taganrog Bay and the Azov Sea by the
crew at the Southern Scientific Center of the Russian Academy
of Sciences, Rostov-on-Don, Russia. Water samples were
collected at eight stations, filtered through Whatman GF/F
glass filters on board a vessel, and analyzed for chl-a. The
chl-a concentration was measured through extraction in 90%
acetone.

One set of hyperspectral imaging data was acquired with
the HICO instrument on board the International Space Station
over the Azov Sea on 13 July, the first day of the field
campaign. Water leaving reflectances were retrieved from
the HICO radiance data using the hyperspectral atmosphere
correction algorithm (ATREM) of Gao and Davis (1997).
Another set of hyperspectral imaging data was acquired on 1
August, but no field data were taken at that time.

3. Results and discussion

The minimum, maximum, median, and mean in situ chl-
a concentrations of the eight stations were 19.67 mg m−3,
93.14 mg m−3, 63.86 mg m−3, and 70.6 mg m−3 respectively.
The water leaving reflectance spectra (figure 1) were quite
similar in magnitude and shape to the reflectance spectra
collected in turbid productive waters (Lee et al 1994,
Dall’Olmo and Gitelson 2005a, Schalles 2006, Gitelson et al
2008). The maximum band ratio, calculated as the maximum
of three reflectance (R) band ratios at wavelengths 443, 490,
520 and 565 nm (R443/R565, R490/R565, R520/R565),
used for estimating chl-a concentrations in case I ocean waters
(e.g. O’Reilly et al 1998, 2000), is poorly related to the
chl-a concentrations (figure 2) due to multiple factors that
contribute to the reflectance patterns in the blue and green
spectral regions. These include absorption by CDOM and non-
algal particles as well as backscattering by particulate matter.
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Figure 3. RMSE of chl-a estimation: tuning spectral bands of the
three-band model (equation (2)) for λ2 and λ3 (A) and λ1 (B).

Thus, this maximum band ratio algorithm was inadequate for
accurate estimation of chl-a concentrations in these case 2
waters (Gitelson 1992, Darecki and Stramski 2004, Dall’Olmo
and Gitelson 2005a).

The contiguous HICO spectral data allow the detection
of fine spectral features, which include (figure 1): (a) chl-a
and carotenoids absorption in the range 430–520 nm, (b) peak
of reflectance in the green region around 560 nm due to
minimal absorption by all pigments, (c) small trough of
reflectance around 570 nm due to phycoerythrin absorption, (d)
trough near 630 nm caused by phycocyanin (PC) absorption,
(e) pronounced minimum due to red chl-a absorption, and
(g) peak around 700 nm caused by minimum of combined
absorption of algae and water.

The fine spectral resolution of HICO data permits the
tuning of spectral bands of the three-band model (equation (2))
in accord with the optical properties of waters studied. We
adapted an optimization procedure based on minimizing the
root mean square error (RMSE) of chl-a estimates (Dall’Olmo
and Gitelson 2005a, Gitelson et al 2008). The procedure
optimizes the wavelengths used in the model (equation (2)) by
initially setting λ1 = 665 nm (red chl-a absorption maximum)
and λ3 = 730 nm (reflectance at this wavelength is not
affected by pigment absorption and is governed by scattering
from all particulate matter). Then we regressed the model
[Rrs(665)−1 − Rrs(λ2)

−1] × Rrs(730) against the measured
chl-a concentration to determine the optimal position of λ2.
The minimal RMSE of the chl-a estimation was at 700 nm
(figure 3(A)). In the second iteration, λ2 was set to 700 nm

Figure 4. Chl-a estimates by the three-band model (equation (2))
with λ1 = 684 nm, λ2 = 700 nm, and λ3 = 720 nm plotted versus
measured chl-a.

and then the model [Rrs(665)−1 − Rrs(700)−1] × Rrs(λ3)

was regressed against the measured chl-a concentrations for
determination of λ3. The minimal RMSE was found in the
range of λ3 around 710–720 nm (figure 3(A)). In the final
iteration, λ3 was set to 720 nm and λ1 was optimized by
regressing the model [Rrs(λ1)

−1 − Rrs(700)−1] × Rrs(720)

against the measured chl-a concentrations. Optimal λ1 was
found at 684 nm (figure 3(B)). Thus, the model for chl-a
estimation was optimized in the form:

chl-a = 418.88{[Rrs(684)−1− Rrs(700)−1]Rrs(720)}+19.275.

(3)
The results of optimization show that the spectral bands of
the observing system should be quite narrow to provide an
estimation of chl-a concentration with RMSE below 5 mg m−3

(figure 3).
Estimates of chl-a concentration by the three-band model

(equation (3)) are presented in figure 4. The NIR–red model
that used HICO-retrieved reflectances explained more than
85% of the chl-a variation and enabled estimation of chl-a
ranging between 17 and 93.14 mg m−3 with RMSE below
10 mg m−3. A good match between estimates and the
measured chl-a illustrates the great potential of hyperspectral
data for monitoring chl-a in coastal and inland waters.

The left-hand panel in figure 5 shows a true color image
(red: 640 nm; green: 550 nm; blue: 470 nm) processed from
the HICO data acquired over the Sea of Azov on 13 July 2010.
The highly productive water areas appear green. The right
panel in figure 5 shows the distribution of chl-a concentrations
derived from the HICO data set using equation (3). The land
areas as well as the areas covered by thin clouds and cloud
shadows are masked in gray color. Detailed chlorophyll spatial
distribution patterns are clearly seen in this image.

The results presented here as well as from proximal
sensing (Dall’Olmo and Gitelson 2005a, Gitelson et al 2008,
2009, Yacobi et al 2011, Gitelson et al 2011) and satellite
remote sensing (Moses et al 2009a, 2009b, Gitelson et al 2011)
illustrate the potential of the NIR–red models to estimate chl-
a concentration in turbid productive waters. However, it is
not clear whether the regression shown in figure 4 is valid
for chl-a values below 40 mg m−3 as only a few stations
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Figure 5. A true color image (left-hand panel) and a chl-a
concentration distribution (right panel) obtained from a HICO data
set acquired over the Sea of Azov on 13 July 2010. In RGB image
points of sampling are presented. Chl-a concentration at stations (in
mg m−3): A—62, B—85, C—93, D—83, E—78, F—40, G—47, and
H—19.5.

with chl-a concentration were sampled and there is a quite
wide scattering of points from the best-fit function. The
relationship between chl-a concentrations, ranged from 0.65
to 48 mg m−3, and MERIS (MEdium Resolution Imaging
Spectrometer) NIR–red models were linear and very close
with R2 above 0.95 (Moses et al 2009a, 2009b, Matishov
et al 2010). Although the accuracy of chl-a concentration
below 40 mg m−3 was not an issue in previous studies using
MERIS data, this has to be addressed further. Except for
the results obtained from a limited dataset in this study
and by Moses et al (2009a, 2009b) and Matishov et al
(2010), it has not yet been possible to consistently calibrate
this relationship so as to quantitatively estimate the chl-
a concentration using satellite data. Some factors make
it difficult to develop reliable calibration equations when
satellite data are used. Firstly, a successful correction
for atmospheric effects and an accurate retrieval of surface
reflectance are crucial to the success of the NIR–red model.
It is especially important for the retrieval of low-to-moderate
chl-a concentration. Without actual in situ measurements of
water leaving radiance taken at the time of satellite overpass,
it is not possible to assess the precision of the atmospheric
correction procedure. Secondly, a satellite captures its entire
swath within a matter of a few seconds whereas it takes
several hours or days to collect in situ data. With the inland,
estuarine, and coastal waters being very dynamic, during the

Figure 6. A true color image (left-hand panel) and a chlorophyll-a
concentration distribution (right-hand panel) retrieved from a HICO
data set acquired over the Sea of Azov on 1 August 2010.

time between satellite overpass and in situ data acquisition
the water might have undergone considerable changes in its
optical characteristics and constituent concentrations. Finally,
the spatial heterogeneity of chl-a distribution in the water body
might be such that the point in situ sampling may not exactly
represent the satellite pixel area (e.g. figure 8 in Moses et al
(2009a) showing wide spatial variability of chl-a concentration
in the Azov Sea). Thus, the model needs to be calibrated and
validated with a larger data set including low-to-moderate chl-a
concentration.

Despite the fact that the NIR–red model (equation (3) and
figure 4) has not yet been validated, we use equation (3) to
derive the chl-a concentration from the HICO image acquired
on 1 August. The goal was to illustrate the chl-a distribution
in the Azov Sea 18 days after the first image was taken.
Figure 6 presents a true color image (left-hand panel) and
chl-a distribution (right-hand panel) retrieved from a HICO
data set acquired on 1 August 2010. Comparing the chl-
a distributions in figures 5 and 6, it is seen how drastically
different the spatial distribution patterns are in a short time
interval of only 18 days. Such a high density of phytoplankton,
as can be seen in the map retrieved from the image of 13 July,
was unique and disappeared due to a strong northeast wind,
a sharp decrease in water depth, a re-suspension of bottom
material, and decreased water transparency and, thus, depth of
light penetration. The comparison shows how dynamic chl-a
concentrations are. Such dynamic behavior of phytoplankton
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in estuarine and coastal waters requires frequent monitoring,
allowing scientists and decision makers to better understand
spatial and temporal phytoplankton patterns and decrease
uncertainties in estimating carbon budget in these productive
waters.

In addition to increasing the accuracy of the chl-a
concentration estimation using narrow spectral bands (see
figure 3 for λ1 and λ2), HICO hyperspectral data may also
be very helpful in quantifying the concentration of other
phytoplankton pigments such as phycoerythrin, phycocyanin
(PC), and chlorophylls-b and -c. Figure 7 presents the
median spectrum of reflectance obtained by HICO over the
Azov Sea (panel (A)) and the first derivative of reflectance
with respect to wavelength (panel (B)). It shows that many
fine absorption features of different phytoplankton pigments
(Bidigare et al 1990) can be clearly detected by HICO; this
allows for the development and testing of the techniques for
their retrieval. Multi-band instruments, such as MODIS or
MERIS (the bands of MERIS are shown in figure 7(A)) will
not be able to capture the fine spectral absorption features.
As is seen in figure 7, a slight trough around 570 nm due
to phycoerythrin absorption (point a) yields a pronounced
minimum in the first derivative spectra (figure 7(B)). To
quantify phycoerythrin concentration, one needs hyperspectral
resolution data at wavelengths surrounding this trough. The
area under a continuum line between 560 and 580 nm may be
a good proxy of phycoerythrin absorption.

Minimum reflectance around 630 nm (point b in
figure 7(A)) is caused by PC and other accessory pigments,
such as chlorophyll-c and chlorophyll-b. Simis et al (2005)
proposed quantification of PC concentration using reflectance
at 625 nm, attributed the absorption signal at 625 nm to
PC, as well as attributing reflectances at 670 nm (point c)
to chl-a absorption and around 700 nm to the minimum
of the combined absorption of phytoplankton pigments and
water. The initial tests have shown that the algorithm
generally provides overestimations of the PC, except when
high PC concentrations associated with massive blue-green
algae blooms were observed (Simis et al 2007). The authors
conclude that correction for the absorption around 625 nm
by other accessory pigments, such as chlorophyll-c and
chlorophyll-b, is needed to yield more realistic PC assessments
in inland and coastal waters. However, only hyperspectral
instruments, such as HICO, bring such opportunities.

4. Conclusions

This paper demonstrates clearly the value of a hyperspectral
instrument in providing a fine resolution of the water
leaving reflectance due to various photosynthetic pigments and
dissolved and particulate matter. The results presented here
illustrate the high potential of the Hyperspectral Imager for
the Coastal Ocean using the NIR–red model to accurately
estimate chl-a concentration in turbid productive waters. To
the best of our knowledge, this is the first time that this
model has been used for chl-a retrieval from HICO data.
However, the models need to be calibrated and validated
with a larger dataset. Challenges still remain in calibrating

Figure 7. Median reflectance spectrum taken in the Azov Sea with
marked locations of spectral bands of MERIS (A) and the first
derivative of reflectance (B). Absorption bands of a—phycoerythrin;
b—phycocyanin, and c—chlorophyll-a.

the model for their universal application to HICO data as
well as quantification of other accessory pigments, such as
phycoerythrin, phycocyanin, chlorophyll-b and chlorophyll-
c. Provided these algorithms can be effectively tested,
robustly calibrated algorithms can be developed for applying
the NIR–red models to hyperspectral satellite data for real-
time quantitative measurements of phytoplankton pigment
concentration, which will greatly benefit scientists and natural
resource managers in making informed decisions on managing
the inland, coastal, and estuarine ecosystems.
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